
1

OPERATING SYSTEMS

INTRODUCTION TO
MEMORY MANAGEMENT

8 Memory Management

In a multiprogramming system, in order to share the
processor, a number of processes must be kept in
memory. Memory management is achieved through
memory management algorithms. Each memory
management algorithm requires its own hardware
support. First we’ll look requirements for memory
management, and then techniques.

1

8 Memory Management

Introduction to memory management

� Requirements

� Relocation

� Protection

� Sharing

� Logical Organization

� Physical Organization

� Techniques for mechanism of memory management

� Partitioning

� Paging

� Segmentation

2

8.1 Requirements

� Requirements

� Relocation

� Protection

� Sharing

� Logical Organization

� Physical Organization

3

8.1.1 Relocation

� Why
� programmer does not know in advance where the program

will be placed in memory when it is first loaded
� while the program is executing, it may be swapped to disk

and returned to main memory at a different location

� Consequences

� memory references must be translated in the code to actual
physical memory address. There are two type of relocation:

� Static relocation is performed before or during the loading of

program into memory

� Dynamic relocation is performed during the execution of the

program

4

8.1.2 Protection

� Why
� Protect process from interference by other processes which

requires permission to access its address space.

� Consequences

� impossible to check addresses in advance since the program
could be relocated

�must be checked at run time

5

2

8.1.3 Sharing

� Why
� Some processes can use the same programs or data. That

leads to wasteful use of the memory.

� Consequences

� Allow several processes to access the same data

� Allow multiple programs to share the same program text

6

8.1.4 Logical Organization

� Programs organized into modules

� stack, text, uninitialized data, libraries, etc.

� Modules may be compiled independently

� Different degrees of protection given to each modules

� read-only, execute-only

� And thus modules may be shared

7

8.1.4 Physical Organization

� Memory organized into two levels:

� main and secondary memory.

� Main memory relatively fast, expensive and volatile

� Secondary memory relatively slow, cheaper, larger
capacity, and non-volatile

� Since sometimes main memory may be insufficient for a
program with its data, secondary memory is used by
OS without asking anything from users.

8

8.2 Partitioning

We will see two type of partitioning with their terms:

� Fixed Partitioning

� Swapping

� Fragmentation

� Variable Partitioning

� First Fit

� Best Fit

� Worst Fit

� Compaction

9

8.2.1 Fixed Partitioning

� In this method, memory is
divided into partitions
whose sizes are fixed.

� OS is placed into the
lowest bytes of memory.

� Relocation of processes is
not needed

memory

OS

n KB small

3n KB Medium

6n KB Large

10

8.2.1 Fixed Partitioning

� Processes are classified on
entry to the system
according to their memory
they requirements.

� We need one Process
Queue (PQ) for each class
of process.

memory

OS

n KB small

3n KB Medium

6n KB Large large area Q

11

3

8.2.1 Fixed Partitioning

� If a process is selected to
allocate memory, then it
goes into memory and
competes for the processor.

� The number of fixed
partition gives the degree
of multiprogramming.

� Since each queue has its
own memory region, there is
no competition between
queues for the memory.

memory

OS

n KB small

3n KB Medium

6n KB Large large area Q

12

8.2.1 Fixed Partitioning

� The main problem with the
fixed partitioning method
is how to determine the
number of partitions, and
how to determine their
sizes.

memory

OS

n KB small

3n KB
Medium

6n KB

Large large area Q

13

Fixed Partitioning with Swapping

� This is a version of fixed
partitioning that uses RRS
with some time quantum.

� When time quantum for a
process expires, it is
swapped out of memory
to disk and the next
process in the
corresponding process
queue is swapped into the
memory.

memory

OS

2K P1

6K P2

12K empty

P3

P4

empty

P5

14

Fixed Partitioning with Swapping

memory

OS

2K P1

6K P2

12K empty

P3

P4

empty

P5
Secondary

storage

15

Fixed Partitioning with Swapping

memory

OS

2K

6K P2

12K empty

P3

P4

empty

P5

Swap out

P1

Secondary

storage

P1

16

Fixed Partitioning with Swapping

memory

OS

2K P3

6K P2

12K empty

P1

P4

empty

P5

Swap in

P3

Secondary

storage

17

4

Fixed Partitioning with Swapping

memory

OS

2K

6K P2

12K empty

P1

P4

empty

P5

Swap out

P3

Secondary

storage

P3

18

Fixed Partitioning with Swapping

memory

OS

2K P1

6K P2

12K empty

P3

P4

empty

P5

Swap in

P1

Secondary

storage

19

Fragmentation

memory

OS

2K

6K Empty (6K)

12K empty

Empty (3K)

P2 (9K)

P1 (2K)

If a whole partition is
currently not being used,

then it is called an external
fragmentation.

If a partition is being
used by a process

requiring some memory
smaller than the partition
size, then it is called an
internal fragmentation.

20

8.2.2 Variable Partitioning

� With fixed partitions we have to deal with the problem of
determining the number and sizes of partitions to minimize
internal and external fragmentation.

� If we use variable partitioning instead, then partition sizes may
vary dynamically.

� In the variable partitioning method, we keep a table (linked
list) indicating used/free areas in memory.

21

8.2.2 Variable Partitioning

� Initially, the whole memory is free and it is considered as one
large block.

� When a new process arrives, the OS searches for a block of
free memory large enough for that process.

� We keep the rest available (free) for the future processes.

� If a block becomes free, then the OS tries to merge it with its
neighbors if they are also free.

22

8.2.2 Variable Partitioning

There are three algorithms for searching the list of
free blocks for a specific amount of memory.

� First Fit

� Best Fit

� Worst Fit

23

5

First fit

� Allocate the first free block that is large enough for
the new process.

� This is a fast algorithm.

24

First fit

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

<FREE> 16 KB

P3 6 KB

<FREE> 4 KB

P4 of 3KB
arrives

25

Initial memory
mapping

First fit

OS

P1 12 KB

P4 3 KB

<FREE> 7 KB

P2 20 KB

<FREE> 16 KB

P3 6 KB

<FREE> 4 KB

P4 of 3KB
loaded here by

FIRST FIT

26

First fit

OS

P1 12 KB

P4 3 KB

<FREE> 7 KB

P2 20 KB

<FREE> 16 KB

P3 6 KB

<FREE> 4 KB

P5 of 15KB
arrives

27

First fit

OS

P1 12 KB

P4 3 KB

<FREE> 7 KB

P2 20 KB

P5 15 KB

<FREE> 1 KB

P3 6 KB

<FREE> 4 KB

P5 of 15 KB
loaded here by

FIRST FIT

28

Best fit

� Allocate the smallest block among those that are large enough
for the new process.

� In this method, the OS has to search the entire list, or it can
keep it sorted and stop when it hits an entry which has a size
larger than the size of new process.

� This algorithm produces the smallest left over block.

� However, it requires more time for searching all the list or
sorting it

� If sorting is used, merging the area released when a process
terminates to neighboring free blocks, becomes complicated.

29

6

Best fit

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

<FREE> 16 KB

P3 6 KB

<FREE> 4 KB

P4 of 3KB
arrives

30

Initial memory
mapping

Best fit

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

<FREE> 16 KB

P3 6 KB

P4 3 KB

<FREE> 1 KB

P4 of 3KB
loaded here by

BEST FIT

31

Best fit

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

<FREE> 16 KB

P3 6 KB

P4 3 KB

<FREE> 1 KB

P5 of 15KB
arrives

32

Best fit

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

P5 15 KB

<FREE> 1 KB

P3 6 KB

P4 3 KB

<FREE> 1 KB

P5 of 15 KB
loaded here by

BEST FIT

33

Worst fit

� Allocate the largest block among those that are large enough
for the new process.

� Again a search of the entire list or sorting it is needed.

� This algorithm produces the largest over block.

34

Worst fit

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

<FREE> 16 KB

P3 6 KB

<FREE> 4 KB

P4 of 3KB
arrives

35

Initial memory
mapping

7

Worst fit

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

P4 3 KB

<FREE> 13 KB

P3 6 KB

<FREE> 4 KB

P4 of 3KB
Loaded here by

WORST FIT

36

Worst fit

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

P4 3 KB

<FREE> 13 KB

P3 6 KB

<FREE> 4 KB

No place to load
P5 of 15K

37

Worst fit

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

P4 3 KB

<FREE> 13 KB

P3 6 KB

<FREE> 4 KB

No place to load
P5 of 15K

Compaction is
needed !!

38

Compaction

� Compaction is a method to overcome the external
fragmentation problem.

� All free blocks are brought together as one large block of free
space.

� Compaction requires dynamic relocation.

� Certainly, compaction has a cost and selection of an optimal
compaction strategy is difficult.

� One method for compaction is swapping out those processes
that are to be moved within the memory, and swapping them
into different memory locations

39

Compaction

OS

P1 12 KB

<FREE> 10 KB

P2 20 KB

P4 3 KB

<FREE> 13 KB

P3 6 KB

<FREE> 4 KB

40

Memory mapping
before

compaction

Compaction

OS

P1 12 KB

P2 20 KB

P4 3 KB

P3 6 KB

41

Swap out

P2

The first moving in
compaction

8

Compaction

OS

P1 12 KB

P2 20 KB

P4 3 KB

P3 6 KB

Swap in

P2

Secondary

storage

42

The first moving in
compaction

Compaction

OS

P1 12 KB

P2 20 KB

P4 3 KB

P3 6 KB

<FREE> 27 KB

Memory mapping
after compaction

Now P5 of 15KB
can be loaded

here

43

Compaction

OS

P1 12 KB

P2 20 KB

P4 3 KB

P3 6 KB

P5 12 KB

<FREE> 12 KB P5 of 15KB is
loaded

44

8.3 Paging

� Partition methods leads fragmentation problems.

� For dealing with them, logical memory (process) is
divided into pieces of same size which are called
pages,

� Physical memory is also divided into pieces called
frames having the size of page.

� Then every page can be assigned into each frame.

� There will be only internal fragmentation especially in
the last page of the process.

45

8.3 Paging

PAGE TABLE
Physical

memory

page frame Attributes f0

0 4 f1

1 3 f2

2 1 f3

3 5 f4

f5

46

In paging, the OS

divide the physical

memory into frames
which are blocks of

small and fixed size

8.3 Paging

Logical

memory PAGE TABLE
Physical

memory

P0 page frame Attributes f0

P1 0 4 f1

P2 1 3 f2

P3 2 1 f3

3 5 f4

f5

47

OS divides also the

logical memory

(program) into pages
which are blocks of

size equal to frame

size.

9

8.3 Paging

Logical

memory PAGE TABLE
Physical

memory

P0 page frame Attributes f0

P1 0 4 f1

P2 1 3 f2

P3 2 1 f3

3 5 f4

f5

48

The OS uses a page table to map program pages to
memory frames.

8.3 Paging

Logical

memory PAGE TABLE
Physical

memory

P0 page frame Attributes f0

P1 0 4 f1

P2 1 3 f2

P3 2 1 f3

3 5 P0 f4

f5

49

The OS uses a page table to map program pages to
memory frames.

8.3 Paging

Logical

memory PAGE TABLE
Physical

memory

P0 page frame Attributes f0

P1 0 4 f1

P2 1 3 f2

P3 2 1 P1 f3

3 5 P0 f4

f5

50

The OS uses a page table to map program pages to
memory frames.

8.3 Paging

Logical

memory PAGE TABLE
Physical

memory

P0 page frame Attributes f0

P1 0 4 P2 f1

P2 1 3 f2

P3 2 1 P1 f3

3 5 P0 f4

f5

51

The OS uses a page table to map program pages to
memory frames.

8.3 Paging

Logical

memory PAGE TABLE
Physical

memory

P0 page frame Attributes f0

P1 0 4 P2 f1

P2 1 3 f2

P3 2 1 P1 f3

3 5 P0 f4

P3 f5

52

The OS uses a page table to map program pages to
memory frames.

8.3 Paging

Logical

memory PAGE TABLE
Physical

memory

P0 page frame Attributes f0

P1 0 4 P2 f1

P2 1 3 f2

P3 2 1 P1 f3

3 5 P0 f4

P3 f5

53

Paging permits a program to allocate noncontiguous
blocks of memory

10

8.3 Paging

� Page size (S) is defined by the hardware.

�Generally page size is chosen as a power of 2

such as 512 words/page or 4096 words/page

etc.

� With this arrangement, the words in the program

have an address called as logical address. Every

logical address is formed of <p,d> pair

* To handle data most efficiently, all processors have a characteristic data

size known as the word size (words). It is usually a power of 2 bytes

54

8.3 Paging

� Logical address: <p, d>

� p is page number

p = logical address div S

� d is displacement (offset)

d = logical address mod S

55

8.3 Paging

� When a logical address <p, d> is generated by the

processor,

� At first, the frame number f corresponding to page

p is determined by using the page table

� And then the physical address is calculated as

(f*S+d) and the memory is accessed.

56

8.3 Paging

Logical

address

Physical

address

p d f d

page frame attr

d d

p f

p f

logical

memory

physical

memory

57

8.3 Paging

Example

� Consider the following information to form a physical memory
map.

� Page Size = 8 words � d : 3 bits

� Physical Memory Size = 128 words

= 128/8=16 frames � f : 4 bits

� Assume maximum program size is 4 pages � p : 2 bits

� A program of 3 pages where P0 � f3; P1 � f6; P2 � f4

58

Logical memory Physical memory

Word 0 # #

Word 1 Page 0 Word 0

(P0) Word 1 Frame 3

Word 7 PAGE TABE # (f3)

Word 8 Page Frame Word 7

Word 9 Page 1 0 3 Word 16

(P1) 1 6 Word 17 Frame 4

Word 15 2 4 # (f4)

Word 16 Word 23

Word 17 Page 2

(P2) #

Word 23

Word 8

Word 9 Frame 6

(f6)

Word 15

#

59

11

8.3 Paging

Program

Line

Logical

Address

Offset

Word 0 00 000 000

Word 1 00 001 001

#

Word 7 00 111 111

Word 8 01 000 000

Word 9 01 001 001

#

Word 15 01 111 111

Word 16 10 000 000

Word 17 10 001 001

#

Word 23 10 111 111

60

8.3 Paging

Program

Line

Logical

Address

Offset Page

Number

Word 0 00 000 000 00

Word 1 00 001 001 00

#

Word 7 00 111 111 00

Word 8 01 000 000 01

Word 9 01 001 001 01

#

Word 15 01 111 111 01

Word 16 10 000 000 10

Word 17 10 001 001 10

#

Word 23 10 111 111 10

61

8.3 Paging

Program

Line

Logical

Address

Offset Page

Number

Frame

Number

Word 0 00 000 000 00 0011

Word 1 00 001 001 00 0011

#

Word 7 00 111 111 00 0011

Word 8 01 000 000 01 0110

Word 9 01 001 001 01 0110

#

Word 15 01 111 111 01 0110

Word 16 10 000 000 10 0100

Word 17 10 001 001 10 0100

#

Word 23 10 111 111 10 0100

62

8.3 Paging

Program

Line

Logical

Address

Offset Page

Number

Frame

Number

Physical

Address

Word 0 00 000 000 00 0011 0011 000

Word 1 00 001 001 00 0011 0011 001

#

Word 7 00 111 111 00 0011 0011 111

Word 8 01 000 000 01 0110 0110 000

Word 9 01 001 001 01 0110 0110 001

#

Word 15 01 111 111 01 0110 0110 111

Word 16 10 000 000 10 0100 0100 000

Word 17 10 001 001 10 0100 0100 001

#

Word 23 10 111 111 10 0100 0100 111

63

8.3 Paging

� Every access to memory should go through the page
table. Therefore, it must be implemented in an
efficient way.

� The efficient ways to implement the page table

� Using registers

� Using main memory

� Using associative registers

64

Using registers

� Keep page table in fast registers. Only the OS is
able to modify these registers.

� However, if the page table is large, this method
becomes very expensive since requires too many
registers.

65

12

Using main memory

� In this second method, the OS keeps a page table in
the memory, instead of registers.

� For every logical memory reference, two memory
accesses are required:

1. To access the page table in the memory, in order to find
the corresponding frame number.

2. To access the memory word in that frame

� This is cheap but a time consuming method.

66

Using associative registers

� Associative registers (cache) contains most recently
used page table entries

� Since all registers run in parallel, searching is fast

� Associative registers are quite expensive. So, a
small number of them should be used

� If page table entry is present (called hit), found
frame number is formed into real address

� Otherwise, the page number is used to index the
process page table in main memory

67

Using associative registers

Example: assume we have a paging system which uses
associative registers. These associative registers have
an access time (rat) of 30 ns, and the memory access
time (mat) is 470 ns. On the other hand, the system
has a hit ratio (h) of 90%.

� rat=30 ns

�mat=470ns

� h=0.9

68

Using associative registers

rat=30 ns, mat=470ns, h=0.9

� Now, if the page number is found in one of the associative
registers, then the effective memory access time:

� ematHIT = 30 + 470 = 500 ns.

� Because one access to associative registers and one access to
the main memory is sufficient.

69

Using associative registers

rat=30 ns, mat=470ns, h=0.9

� On the other hand, if the page number is not found in
associative registers, then the effective memory access time:

� ematMISS = 30 + (470+470) = 970 ns.

� Since one access to associative registers and two accesses to
the main memory are required.

70

Using associative registers

rat=30 ns, mat=470ns, h=0.9

ematHIT = 500 ns, ematMISS = 970 ns.

� Then, the weighted emat is calculated as follows:

emat= h *ematHIT + (1-h) * ematMISS

= 0.9 * 500 + 0.1 * 970

= 450 + 97 = 547 ns

71

13

Sharing Pages

� Sharing is an important advantage of paging.

� It is possible to share system procedures or programs,
user procedures or programs, and possibly data
area.

� Sharing pages is advantageous especially in time-
sharing systems.

72

Sharing Pages

Example: Consider a system having page size=30 MB. There
are 3 users executing an editor program which is 90 MB (3
pages) in size, with a 30 MB (1 page) data space.

� To support these 3 users, the OS must allocate

3 * (90+30) = 360 MB space

� However, if the editor program is shared as read only, then all users
can use it, and only one copy of the editor program is sufficient.
Therefore, the OS must allocate only

90 + 30 * 3 = 180 MB space

73

74

User-1 PT-1 Physical

P0 e1 Page# Frame# Memory

P1 e2 0 8 f0 OS

P2 e3 1 4 f1 OS

P3 data1 2 5 f2 OS

3 7 f3

f4 e2

User-2 PT-2 f5 e3

P0 e1 Page# Frame# f6

P1 e2 0 8 f7 data1

P2 e3 1 4 f8 e1

P3 data2 2 5 f9

3 12 f10 data3

f11

User-3 PT-3 f12 data 2

P0 e1 Page# Frame# f13

P1 e2 0 8 f14

P2 e3 1 4 f15

P3 data3 2 5

3 10

75

User-1 PT-1 Physical

P0 e1 Page# Frame# Memory

P1 e2 0 8 f0 OS

P2 e3 1 4 f1 OS

P3 data1 2 5 f2 OS

3 7 f3

f4 e2

User-2 PT-2 f5 e3

P0 e1 Page# Frame# f6

P1 e2 0 8 f7 data1

P2 e3 1 4 f8 e1

P3 data2 2 5 f9

3 12 f10 data3

f11

User-3 PT-3 f12

P0 e1 Page# Frame# f13

P1 e2 0 8 f14

P2 e3 1 4 f15

P3 data3 2 5

3 10

When User 2 terminates,
Data2 page is removed
from memory, but editor

pages remain..

76

User-1 PT-1 Physical

P0 e1 Page# Frame# Memory

P1 e2 0 8 f0 OS

P2 e3 1 4 f1 OS

P3 data1 2 5 f2 OS

3 7 f3

f4 e2

User-2 PT-2 f5 e3

P0 e1 Page# Frame# f6

P1 e2 0 8 f7

P2 e3 1 4 f8 e1

P3 data2 2 5 f9

3 12 f10 data3

f11

User-3 PT-3 f12

P0 e1 Page# Frame# f13

P1 e2 0 8 f14

P2 e3 1 4 f15

P3 data3 2 5

3 10

When User 1 terminates,
data1 is also removed

from memory.

77

User-1 PT-1 Physical

P0 e1 Page# Frame# Memory

P1 e2 0 8 f0 OS

P2 e3 1 4 f1 OS

P3 data1 2 5 f2 OS

3 7 f3

f4

User-2 PT-2 f5

P0 e1 Page# Frame# f6

P1 e2 0 8 f7

P2 e3 1 4 f8

P3 data2 2 5 f9

3 12 f10

f11

User-3 PT-3 f12

P0 e1 Page# Frame# f13

P1 e2 0 8 f14

P2 e3 1 4 f15

P3 data3 2 5

3 10

When User 3 terminates,
Data-3 and also editor
segments are removed

from memory.

14

8.4 Segmentation

� By means of segmentation, programs can be divided
into variable sized segments, as in variable
partitioning.

� But programs are divided into small parts, as in
paging.

� Every logical address is transformed into a segment
value and an offset value.

� Programs are segmented automatically when they
are compiled.

78

8.4 Segmentation

Every C compiler may create segments for:

� the code of each function

� the local variables for each function

� the global variables.

79

main

Func 1 Func 2

Data 1 Data 2

Data 3

OS

main

Func 1

Func 2

Data 1

Data 2

Data 3

Logical memory

Physical memory

8.4 Segmentation

For transforming address, a table is used. When a
logical address <s, d> is generated:

1. Base and limit values corresponding to segment s
are determined using this segment table

2. The OS checks whether d is in the limit
� 0 ≤ d < limit

3. If so, then the physical address is calculated as
� base + d

80

8.4 Segmentation
81

s d

Logical address

seg. # limit base attr

Segment Table

0≤d
<limit

acess acess
the word at
physical address
= base + d

OS

segment s

Physical memory

base

d

No

Yes

ERROR

8.4 Segmentation

Example: By generating the memory map according
to the given segment table, find the corresponding
physical address for logical address of <3,1123>.

82

Segment Limit Base

0 1500 1000

1 200 5500

2 700 6000

3 2000 3500

8.4 Segmentation
83

Segment Limit Base

0 1500 1000

1 200 5500

2 700 6000

3 2000 3500

OS

s0

s3

s1

s2

Physical memory

1000

2500

3500

5500

5700

6000

6700

1500

2000

200

700

Base=

3500

4623

d=

1123

0

Logical address: <3,1123>

s=3, d=1123

Check if d<limit

1123<2000 #.. OK

Physical address (base+d) = 3500+1123=4623

15

8.4 Segmentation

How can we implement the segment table efficiently?

� Segment tables may be implemented in the main
memory or in associative registers, in the same way it is
done for page tables.

What about the sharing?

� Also sharing of segments is applicable as in paging.
Shared segments should be read only and should be
assigned the same segment number.

84

Sharing Segments

ST1

seg lim base

0 1500 1000

1 2000 3500

ST2

seg lim base

0 1500 1000

1 200 5500

ST3

seg lim base

0 1500 1000

1 700 6000

85

OS

editor

Data-1

Data-2

Data-3

Physical memory

1000

2500

3500

5500

5700

6000

6700

1500

2000

200

700

0

editor

Data-1

user1

s0

s1

editor

Data-2

user2

s0

s1

editor

Data-3

user3

s0

s1

Sharing Segments

ST1

seg lim base

0 1500 1000

1 2000 3500

ST3

seg lim base

0 1500 100

1 700 6000

86

OS

editor

Data-1

Dat-3

Physical memory

1000

2500

3500

5500

6000

6700

1500

2000

700

0

editor

Data-1

user1

s0

s1

editor

Data-3

user3

s0

s1

User 2 terminates:
Data-2 removed from

memory, but editor
remains..

Sharing Segments

ST3

seg lim base

0 1500 100

1 700 6000

87

OS

editor

Data-3

Physical memory

1000

2500

6000

6700

1500

700

0

editor

Data-3

user3

s0

s1

User 1 terminates:
Data-1segment is

removed from memory.

Sharing Segments
88

OS

Physical memory

0

When User 3 terminates:
Data-1 and also editor
segments are removed

from memory.

When User 3 terminates:
Data-3 segment and

also editor segment are
removed from memory.

