
1

OPERATING SYSTEMS

DEADLOCKS

In a multiprogramming system, when a process
requests resources if those resources are being used
by other processes then the process enters a waiting
state. However, if other processes are also in a
waiting state, we have deadlock. As a formal
definition, a set of processes is in a deadlock state if
every process in the set is waiting for an event that
can only be caused by some processes in the same set.

2

7 Deadlocks

Suppose both two processes want to scan a document
and record it on a CD. Process A first requests
permission to use the scanner and process B requests
the CD recorder first. They are granted. Now A asks
for the CD recorder, but the request is denied until B
releases it. Unfortunately, instead of releasing the CD
recorder B asks for the scanner. At this point both
processes are blocked and will remain forever. This
situation is called a deadlock.

3

7 Deadlocks

As well as on hardware resources, deadlocks can
occur on software resources. For example, in a
database system, a program may have to lock
several records it is using, to avoid race conditions. If
process A locks record R1 and process B locks record
R2, and then each process tries to lock the other one's
record, we also have a deadlock.

4

7 Deadlocks

A resource can be a hardware device or a piece of
information. For some resources, several identical
instances may be available, such as three disk drives.
When interchangeable copies of a resource are
available, any one of them can be used to satisfy any
request for the resource. In short, a resource is
anything that can be used by only a single process at
any instant of time.

5

7.1 Resources

Resources come in two types: preemptable and non-
preemptable.

� A preemptable resource, like memory, is one that can
be taken away from the process owning it with no ill
effects.

� A non-preemptable resource, like CD recorders, is one
that cannot be taken away from its current owner without
causing the computation to fail.

6

7.1 Resources

2

Consider a system with 64 MB of user memory, one
CD recorder, and two 64-MB processes that each
want to record on CD. Process A starts to compute the
values to burn. Before it has finished with the
computation, it exceeds its time quantum and is
swapped. But if process A has begun to burn,
suddenly giving the CD recorder to process B will
result in a corrupted CD.

7

7.1 Resources

In general, deadlocks involve non-preemptable
resources. Potential deadlocks that involve
preemptable resources can usually be solved by
reallocating resources from one process to another.
Thus our treatment will focus on non-preemptable
resources.

8

7.1 Resources

The sequence of events required to use a resource is
as requesting, using, and releasing the resource. If the
resource is not available when it is requested, the
requesting process is forced to wait. In some operating
systems, the process is automatically blocked when a
resource request fails, and awakened when it
becomes available. In other systems, the request fails
with an error code, and it is up to the calling process
to wait a little while and try again.

9

7.1 Resources

Because all the processes are waiting, none of them
will ever cause any of the events that could wake up
any of the other members of the set, and all the
processes continue to wait forever. For this model, we
assume that processes have only a single thread and
that there are no interrupts possible to wake up a
blocked process. The no-interrupts condition is needed
to prevent an otherwise deadlocked process from
being awakened by, say, an alarm, and then causing
events that release other processes in the set.

10

7.2 Principles of Deadlock

In most cases, each member of the set of deadlocked
processes is waiting for a resource that is owned by
another deadlocked process. None of the processes
can run, none of them can release any resources, and
none of them can be awakened. The number of
processes and the number and kind of resources
possessed and requested are unimportant.

11

7.2 Principles of Deadlock

Following four conditions must be present for a
deadlock to occur:

1. Mutual exclusion condition

2. Hold and wait condition

3. No preemption condition

4. Circular wait condition

12

7.3 Conditions for Deadlock

3

Mutual exclusion: Each resource is either currently
assigned to exactly one process or is available.

Hold and wait: Processes currently holding resources
that were granted earlier can request new resources.

No preemption: Resources previously granted cannot
be forcibly taken away from a process. They must be
clearly released by the process holding them.

Circular wait: There must be a circular chain of two or
more processes, each of which is waiting for a
resource held by the next member of the chain.

13

7.3 Conditions for Deadlock

If one of these conditions is absent, no deadlock is
possible. In fact, each condition relates to a policy
that a system can have or not have:

� Can a given resource be assigned to more than
one process at once?

� Can a process hold a resource and ask for
another?

� Can resources be preempted?

� Can circular waits exist?

14

7.3 Conditions for Deadlock

To modeling of these four conditions directed graphs
can be used. The graphs have two kinds of nodes:

� Processes (circles)

� Resources (squares)

An arc from a resource node to a process node means
that the resource has previously been requested by,
granted to, and is currently held by that process. An
arc from a process to a resource means that the
process is currently blocked waiting for that resource.

15

7.4 Deadlock Modeling
16

7.4 Deadlock Modeling

(a) Holding a resource (b) Requesting a resource. (c) Deadlock.

In (a) resource R is currently assigned to process A. In
(b) , process B is waiting for resource S. In (c) we see a
deadlock: process C is waiting for resource T, which is
currently held by process D. Process D is not about to
release resource T because it is waiting for resource U,
held by C. Both processes will wait forever. A cycle in
the graph means that there is a deadlock involving
the processes and resources in the cycle.

17

7.4 Deadlock Modeling

Now let us see how resource graphs can be used.
Imagine that we have three processes, A, B, and C,
and three resources, R, S, and T. The requests and
releases of the three processes are given in (a-c). The
operating system is free to run any unblocked process
at any instant, so it could decide to run A until A
finished all its work, then run B to completion, and
finally run C.

18

7.4 Deadlock Modeling

4

This ordering does not lead to any deadlocks because
there is no competition for resources but it also has no
parallelism at all. In addition to requesting and
releasing resources, processes compute and do I/O.
When the processes are run sequentially, there is no
possibility that while one process is waiting for I/O,
another can use the CPU. Thus running the processes
strictly sequentially may not be optimal. On the other
hand, if none of the processes do any I/O at all,
shortest job first is better than round robin.

19

7.4 Deadlock Modeling
20

7.4 Deadlock Modeling

An example
A B C

Let us now suppose that the processes do both I/O
and computing, so that round robin is a reasonable
scheduling algorithm. The resource requests might
occur in the order of (d). If these six requests are
carried out in that order, the six resulting resource
graphs are shown in (e)-(j). After request 4 has been
made, A blocks waiting for S, as shown in (h). In the
next two steps B and C also block, ultimately leading
to a cycle and the deadlock of (j). From this point on,
the system is frozen.

21

7.4 Deadlock Modeling

The operating system is not required to run the
processes in any special order. In particular, if
granting a particular request might lead to deadlock,
the operating system can simply suspend the process
without granting the request until it is safe. If the
operating system knew about the impending
deadlock, it could suspend B instead of granting it S.
By running only A and C, we would get the requests
and releases of (k) instead of (d). This sequence leads
to the resource graphs of (l-q), which do not lead to
deadlock.

22

7.4 Deadlock Modeling

23

7.4 Deadlock Modeling

An example

(o) (p) (q)

After step (q), process B can be granted S because A
is finished and C has everything it needs. Even if B
should eventually block when requesting T, no
deadlock can occur. B will just wait until C is finished.

We just carry out the requests and releases step by
step, and after every step check the graph to see if it
contains any cycles. If so, we have a deadlock; if not,
there is no deadlock.

24

7.4 Deadlock Modeling

5

Four strategies are used for dealing with deadlocks:

� Just ignore the problem altogether. Maybe if you
ignore it, it will ignore you.

� Detection and recovery. Let deadlocks occur,
detect them, and take action.

� Dynamic avoidance by careful resource
allocation.

� Prevention, by structurally negating one of the
four conditions necessary to cause a deadlock.

25

7.4 Deadlock Modeling

The simplest approach is the ostrich method: stick your
head in the sand and pretend there is no problem at
all.

26

7.5 Ignoring: The Ostrich Method

About this method, we must ask some questions:

� how often the problem is expected

� how often the system crashes for other reasons

� how serious a deadlock is

If deadlocks occur on the average once every five
years, but system crashes due to hardware failures,
compiler errors, and operating system bugs occur once
a week, most engineers would not be willing to pay a
large penalty in performance.

27

7.5 Ignoring: The Ostrich Method

Windows and Unix systems use this method. These OSs
potentially suffer from deadlocks that are not even
detected, let alone automatically broken. The total
number of processes in a system is determined by the
number of entries in the process table. Thus process
table slots are finite resources. If a ‘fork’ fails because
the table is full, a reasonable approach for the
program doing the fork is to wait a random time and
try again.

28

7.5 Ignoring: The Ostrich Method

A second technique is detection and recovery. When
this technique is used, the system does not do anything
except monitor the requests and releases of resources.
Every time a resource is requested or released, the
resource graph is updated, and a check is made to
see if any cycles exist. If a cycle exists, one of the
processes in the cycle is killed. If this does not break
the deadlock, another process is killed, and so on until
the cycle is broken.

29

7.6 Detection and Recovery

Consider a system with seven processes, A though G,
and six resources, R through W. The state of which
resources are currently owned and which ones are
currently being requested is as follows:

1. Process A holds R and wants S

2. Process B holds nothing but wants T

3. Process C holds nothing but wants S

4. Process D holds U and wants Sand T

5. Process E holds T and wants V

6. Process F holds Wand wants S

7. Process G holds V and wants U

30

7.6 Detection and Recovery

6

31

7.6 Detection and Recovery

Although it is relatively simple to pick out the
deadlocked processes by eye from a simple graph,
for use in actual systems we need a formal algorithm
for detecting deadlocks. We will give a simple
algorithm that inspects a graph and terminates either
when it has found a cycle or when it has shown that
none exists. It uses one dynamic data structure, L, a list
of nodes, as well as the list of arcs. During the
algorithm, arcs will be marked to indicate that they
have already been inspected, to prevent repeated
inspections.

32

7.6 Detection and Recovery

1. For each node, N in the graph, perform the following five

steps with N as the starting node.

2. Initialize L to the empty list, designate all arcs as unmarked.

3. Add current node to end of L, if the node now appears in L

two times. If it does, there is a cycle, algorithm terminates.

4. From given node, see if any unmarked outgoing arcs. If so,
go to step 5; if not, go to step 6.

5. Pick an unmarked outgoing arc at random and mark it. Then

follow it to the new current node and go to step 3.

6. If this is initial node, there is no cycle, algorithm terminates.

Otherwise, dead end. Remove it, go back to previous node,
make that one current node, go to step 3.

33

7.6 Detection and Recovery

Suppose that our deadlock detection algorithm has
succeeded and detected a deadlock. What next?
Some way is needed to recover and get the system
going again.

� Recovery through Preemption

� Recovery through Rollback

� Recovery through Killing Processes

34

7.6 Detection and Recovery

Recovery through preemption

� Take a resource from some other process

� Depends on nature of the resource

Recovery through rollback

� Checkpoint a process periodically

� Use this saved state

� Restart the process if it is found deadlocked

Recovery through killing processes

� Kill one of the processes in the deadlock cycle

� The other processes get its resources

� Choose process that can be rerun from the beginning

35

7.6 Detection and Recovery

To prevent the system from deadlocks, one of the four
discussed conditions that may create a deadlock
should be discarded.

36

7.7 Deadlock Prevention

Condition Approach

Mutual exclusion Spool everything

Hold and wait Request all resource initially

No preemption Take resources away

Circular wait Order resources numerically

7

Mutual Exclusion

� Some resources are not sharable, but can be made
sharable (printer, tape, etc.)

� Some resources can be made virtual
� Spooling - Printer

� Does spooling apply to all non-sharable resources?

� Mixing - Soundcard

37

7.7 Deadlock Prevention

Hold and Wait

� Require processes to request resources before starting
� A process never has to wait for what it needs

� Telephone companies do this

� Solution
� Process must give up all resources

� Then request all immediately needed

38

7.7 Deadlock Prevention

No Preemption

� This is not a reasonable option

� Consider a process given the printer

� Halfway through its job

� No forcibly take away printer

39

7.7 Deadlock Prevention

Circular Wait

� Impose an order of requests for all resources

� Method

� Assign a unique ID to each resource

� All resource requests must be in an ascending order of
the IDs

� Release resources in a descending order

� Prove this method has no circular wait!

� Is this generally feasible?

40

7.7 Deadlock Prevention

A way to avoid deadlocks is the banker's algorithm
proposed by Dijkstra (1965). Consider a banker and
some credit customers. The banker does not have
enough cash to lend every customer at the same time,
but he knows that not all customers will need their
maximum credit immediately. He also trusts every
customer to be able to repay his loan, so he knows
eventually he can service all the requests. Here,
customers are processes, units are disk drives, and the
banker is the operating system.

41

7.8 Avoidance: The Banker's algorithm

Dijkstra’s (1965) the banker's algorithm

� Each customer tells banker the maximum number of
resources it needs

� Customer borrows resources from banker

� Customer returns resources to banker

� Customer eventually pays back loan

� Banker only lends resources if the system will be in

a safe state after the loan

Safe state - there is a lending sequence such that all
customers can take out a loan

Unsafe state - there is a possibility of deadlock

42

7.8 Avoidance: The Banker's algorithm

8

43

7.8 Avoidance: The Banker's algorithm

(a) Safe (b) Safe (c) Unsafe

Each part of the figure shows a state of the system
with respect to resource allocation, that is, a list of
customers showing the money already loaned (disk
drives already assigned) and the maximum credit
available (maximum number of disk drives needed at
once later). A state is safe if there exists a sequence
of other states that leads to all customers getting
loans up to their credit limits (all processes getting all
their resources and terminating).

44

7.8 Avoidance: The Banker's algorithm

The customers go about their respective businesses,
making loan requests from time to time (i.e., asking for
resources). At a certain moment, the situation is as
shown in (b). This state is safe because with two units
left, the banker can delay any requests except C's,
thus letting C finish and release all four of his
resources. With four units in hand, the banker can let
either D or B have the necessary units, and so on.

45

7.8 Avoidance: The Banker's algorithm

Consider what would happen if a request from B for
one more unit were granted in (b). We would have
situation (c), which is unsafe. If all the customers
suddenly asked for their maximum loans, the banker
could not satisfy any of them, and we would have a
deadlock. An unsafe state does not have to lead to
deadlock, since a customer might not need the entire
credit line available, but the banker cannot count on
this behavior.

46

7.8 Avoidance: The Banker's algorithm

The banker's algorithm considers each request as it
occurs, and sees if granting it leads to a safe state. If
it does, the request is granted; otherwise, it is
postponed until later. To see if a state is safe, the
banker checks to see if he has enough resources to
satisfy some customer. If so, those loans are assumed
to be repaid, and the customer now closest to the limit
is checked, and so on. If all loans can eventually be
repaid, the state is safe and the initial request can be
granted.

47

7.8 Avoidance: The Banker's algorithm
48

7.8 Avoidance: The Banker's algorithm

(a) (b) (c) (d) (e)

Consider we have three processes and 10 free disk
space. Processes (A, B, and C) need 9, 4, and 7 disk
space, respectively. First, how can we serve to
processes?

