
1

OPERATING SYSTEMS

PROCESSES

All modern computers often do several things at the
same time. A modern operating system sees each
software as a process. When a user PC is booted,
many processes are secretly started. A process may
be started up to wait for incoming e-mail, another
process may run on behalf of the antivirus program to
check periodically if any new virus definitions are
available, explicit user processes may be running,
printing files and burning a CDROM, all while the user
is surfing the Web.

2

2 Processes

2 Processes

All this activity has to be managed, and a
multiprogramming system supporting multiple
processes comes in very handy here. In any
multiprogramming system, the CPU switches from
process to process quickly, running each for tens or
hundreds of milliseconds. While the CPU is running
only one process, in the course of 1 second, it may
work on several of them, giving the illusion of
parallelism. Sometimes people speak of pseudo
parallelism in this context, to contrast it with the true
hardware parallelism of multiprocessor systems.

3

2 Processes

Keeping track of multiple, parallel activities is hard
for people to do. Therefore, operating system
designers over the years have evolved a conceptual
model that makes parallelism easier to deal with. That
model, its uses, and some of its consequences form the
subject of this chapter.

4

2.1 The Process Model

In this model, all software on a computer is organized
into a number of sequential processes. A process is just
an instance of an executing program, including the
current values of

�the program counter,

�registers,

�and variables.

5

2.1 The Process Model

Conceptually, each process has its own virtual CPU. In
reality, of course, the real CPU switches back and
forth from process to process, but to understand the
system, it is much easier to think about a collection of
processes running in (pseudo) parallel than to try to
keep track of how the CPU switches from program to
program. This rapid switching back and forth is called
multiprogramming.

6

2

2.1 The Process Model

In Figure (a), there are four programs in memory, therefore we
see four processes in Figure (b). Each with its own flow of control,
and each one running independently of the other ones. Of course,
there is only one physical program counter, so when each process
runs, its logical program counter is loaded into the real program
counter.

7

(a) Multiprogramming of four programs. (b) Conceptual model of four

independent sequential processes. (c) Only one program is active at once.

2.1 The Process Model

When it is finished for the time being, the physical program
counter is saved in the process’ logical program counter in
memory. In Figure (c) we see that viewed over a long enough time
interval, all the processes have made progress, but at any given
instant only one process is actually running.

8

(a) Multiprogramming of four programs. (b) Conceptual model of four

independent sequential processes. (c) Only one program is active at once.

2.1 The Process Model

The key idea here is that a process is an activity of
some kind. It has a program, input, output, and a state.
A single processor may be shared among several
processes, with some scheduling algorithm being used to
determine when to stop work on one process and
service a different one. It is worth noting that if a
program is running twice, it counts as two processes. The
fact that two running processes happen to be running
the same program does not matter; they are distinct
processes. The operating system may be able to share
the code between them so only one copy is in memory.

9

2.2 Process Creation

Operating systems need some way to make sure all the
necessary processes exist. On the contrary of very
simple systems, general-purpose systems need to create
and terminate processes as needed during operation.
There are four principal events that cause processes to
be created:

1. System initialization.

2. Process creation system call by a running process.

3. A user request to create a new process.

4. Initiation of a batch job.

10

2.2 Process Creation

In UNIX based OSs, there is only one system call to
create a new process: "fork". This call creates an exact
clone of the calling process. After the fork, the two
processes (the parent and the child) have the same
memory image, the same environment strings, and the
same open files. Usually, the child process then executes
a "exec" class system call to change its memory image
and run a new program. The reason for this two-step
process is to allow the child to manipulate its file
descriptors.

11

2.2 Process Creation

In Windows, in contrast, a single Win32 function call,
CreateProcess, handles both process creation and
loading the correct program into the new process. This
call has 10 parameters, which include the program to
be executed, some parameters, various security
attributes, control bits, priority information, window
specifications, and a pointer about the newly created
process caller. In addition to CreateProcess, Win32 has
about 100 other functions for managing and

synchronizing processes and related topics.

12

3

2.3 Process Termination

After a process has been created, it starts running and
does whatever its job is. However, nothing lasts forever,
not even processes. Later the new process will terminate,
usually due to one of the following conditions:

1. Normal exit (voluntary).

2. Error exit (voluntary).

3. Fatal error (involuntary).

4. Killed by another process (involuntary).

13

2.3 Process Termination

� Normal: Most processes terminate because they have
done their work. When a compiler has compiled the
program given to it, the compiler executes a system call
to tell the operating system that it is finished. This call is
exit in UNIX and ExitProcess in Windows.

� Error: an error caused by the process, often due to a
program bug.

� Fatal error: the process discovers a fatal error.

� Killed by another: the process executes a system call
telling the operating system to kill some other process.

14

2.4 Process Hierarchies

In some systems, when a process creates another
process, the parent process and child process continue to
be associated in certain ways. The child process can
itself create more processes, forming a process
hierarchy. In UNIX, a process and all of its descendants
form a process group together. When a user sends a
signal from the keyboard, the signal is delivered to all
members of the process group currently associated with
the keyboard. Individually, each process can use or
ignore the signal.

15

2.4 Process Hierarchies

In contrast, Windows has no concept of a process
hierarchy. All processes are equal.

The only hint of a process hierarchy is that when a child
process is created, the parent gets process ID of the
child to control it. However, it is free to pass this ID to
some other process, thus invalidating the hierarchy.

And, processes in UNIX cannot disinherit their children.

16

2.5 Process States

State diagram shows three states a process may be in:

1. Running (actually using the CPU at that instant).

2. Ready (temporarily stopped to let another process run).

3. Blocked (unable to run until some external event happens).

17

2.5 Process States

Four transitions are possible among these three states:

1. Process blocks for input

2. Scheduler picks another process

3. Scheduler picks this process

4. Input becomes available

18

4

2.5 Process States

Transition 1 occurs when the operating system discovers
that a process cannot continue right now. Usually when a
process reads from a pipe or special file and there is no
input available, the process is automatically blocked.
Transitions 2 and 3 are caused by the process scheduler,
a part of the operating system. Scheduling deciding
which process should run when and for how long is an
important OS task. Many scheduling algorithms have
been devised to increase efficiency of the system and
the processes.

19

2.5 Process States

Transition 2 occurs when the scheduler decides that the
running process has run long enough, and it is time to let
another process have some CPU time. Transition 3 occurs
when all the other processes have had their fair share
and it is time for the first process to get the CPU to run
again. Transition 4 occurs when the external event for
which a process was waiting happens. If no other
process is running at that instant, Transition 3 will be
triggered and the process will start running. Otherwise it
may have to wait in ready state for a while until the
CPU is available.

20

2.6 Implementation of Process

To implement the process model, the operating system
maintains an array of structures, called the process
table, with one entry per process. Each entry is also
called as process control block. An entry contains
important information about the process' state, including
its program counter, stack pointer, memory allocation,
the status of its open files, its accounting and scheduling
information, and everything else about the process that
must be saved when the process is switched from
running to ready or blocked state so that it can be
restarted later as if it had never been stopped.

21

2.6 Implementation of Process

Figure shows some of the key fields in a process table.

22

2.6 Implementation of Process

By the process table, it is possible to understand how
multiple sequential processes are maintained on one
CPU and many I/O device. Each I/O device is used via
its interrupt vector which contains the address of the
interrupt service procedure. Suppose that an user
process is running when a disk interrupt happens. The
user process’s program counter, program status word,
and registers are pushed onto the stack by the interrupt
hardware. The computer then jumps to the address
specified in the interrupt vector. That is all the hardware
does. Then it is up to the interrupt service procedure.

23

2.7 System programming

To understand the processes, some C codes on system
programming may be useful.

�Faulty parallelism

�Standard parallelism

�Serialized parallelism

�Murderer parent

�Zombie process

�Orphan process

24

5

2.7.1 Faulty parallelism

#include <stdio.h>
#include <unistd.h>

main()
{
fork();
execl(“hello”, “hello”, NULL, NULL);
printf(“I am parent process.”);
}

25

2.7.2 Standard parallelism

#include <stdio.h>
#include <unistd.h>

main()
{
pid = fork();
if (pid==0)

execl(“hello”, “hello”, NULL, NULL);
else

printf(“I am parent process.”);
}

26

2.7.3 Serialized parallelism

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>

main()
{
pid_t pid;
int status;
pid = fork();
if (pid==0)
{
execl(“hello”, “hello”, NULL, NULL);
}

…
else

{
waitpid(pid, &status, 0);
printf(“I am parent process.”);
}

}

27

2.7.4 Murderer parent

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
main()
{
pid_t pid;
int status;
pid = fork();
if (pid==0)
{
printf(“I am child process”);
sleep(5);
printf(“I woke up”);
}

…
else

{
kill(pid, SIGKILL);
waitpid(pid, &status, 0);
printf(“I killed my child.”);
}

}

28

2.7.5 Zombie process

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>

main()
{
pid_t pid;

pid = fork();
if (pid==0)

exit(0);
else

sleep(30);
}

29

2.7.6 Orphan process

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>

main()
{
pid_t pid;

pid = fork();
if (pid==0)
{
sleep(5);
printf(“where is my mom?”);
}

…

else
printf(“I am parent process.”);

}

30

