
1

OPERATING SYSTEMS

OPERATING SYSTEMS
CONCEPTS

1.1 General Definition

� An Operating System (OS) is a program which acts
as an interface between computer system users and
the computer hardware.

� It provides a user-friendly environment in which a
user may easily develop and execute programs.

� Otherwise, hardware knowledge would be
mandatory for computer programming.

� So, it can be said that an OS hides the complexity
of hardware from uninterested users.

2

1.1 General Definition

� In general, a computer system has some
resources which may be utilized to solve a
problem. They are

�Memory

�Processor(s)

� I/O

� File System

�etc.

3

1.1 General Definition
4

Cartoon
5

1.1 General Definition

� The OS manages these resources and allocates
them to specific programs and users.

� With the management of the OS, a programmer is
rid of difficult hardware considerations.

� An OS provides services for
� Processor Management

� Memory Management

� File Management

� Device Management

� Concurrency Control

6

2

1.1 General Definition

� Another aspect for the
usage of OS is that; it is
used as a predefined library
for hardware-software
interaction.

� This is why, system
programs apply to the
installed OS since they
cannot reach hardware
directly.

Application Programs

System Programs

Operating System

Machine Language

HARDWARE

7

1.1 General Definition

� Since we have an already written library, namely
the OS, to add two numbers we simply write the
following line to our program:

c = a + b ;

8

1.1 General Definition

� in a system where there is no OS installed, we
should consider some hardware work as:

(Assuming an MC 6800 computer hardware)

LDAA $80 � Loading the number at memory location 80

LDAB $81 � Loading the number at memory location 81

ADDB � Adding these two numbers

STAA $55 � Storing the sum to memory location 55

� As seen, we considered memory locations and used
our hardware knowledge of the system.

9

� In an OS installed machine, since we have an
intermediate layer, our programs obtain some
advantage of mobility by not dealing with
hardware.

� For example, the above program segment would
not work for an 8086 machine, where as the

“c = a + b ;”

syntax will be suitable for both.

1.1 General Definition
10

A simple program

segment with no

hardware

consideration

A more

sophisticated

program segment

with hardware

consideration

Hardware

response
OS Machine

Language

1.1 General Definition
11

1.1 General Definition

� With the advantage of easier programming
provided by the OS, the hardware, its machine
language and the OS constitutes a new combination
called as a virtual (extended) machine.

Machine

Language

Hardware

Machine

Language

Hardware

Operating

System

Machine

Virtual

(Extended)

Machine

12

3

1.1 General Definition

� In a more simplistic approach, in fact, OS itself is a
program.

� But it has a priority which application programs
don’t have.

� OS uses the kernel mode of the microprocessor,
whereas other programs use the user mode.

� The difference between two is that; all hardware
instructions are valid in kernel mode, where some of
them cannot be used in the user mode.

13

1.2 History of Operating Systems

� It all started with computer hardware in about
1940s.

ENIAC 1943

14

1.2 History of Operating Systems

� ENIAC (Electronic Numerical Integrator and
Computer), at the U.S. Army's Aberdeen Proving
Ground in Maryland.

� built in the 1940s,

� weighed 30 tons,

� was eight feet high, three feet deep, and 100 feet long

� contained over 18,000 vacuum tubes that were cooled
by 80 air blowers.

15

1.2 History of Operating Systems

� Computers were using vacuum tube technology.

ENIAC’s vacuum tubes

16

1.2 History of Operating Systems

ENIAC’s backside

17

1.2 History of Operating Systems

Programs were loaded into memory manually using switches, punched

cards, or paper tapes.

ENIAC : coding by cable connections

18

4

1.2 History of Operating Systems

Although some people assert origin of the term
"debugging" be based on Thomas Edison or
aeronautics, in computer science, the most of people
believe its coming from an interesting story on first
computer studies in the 1940s.

19

1.2 History of Operating Systems

While a group researchers were working on first
computer in the history, they discovered a kind of bug
stuck in circuits. Because it prevented to run the
computer, they cleaned the system from bugs.

Since that day, the term “debugging” is used as
cleaning the system, but especially in software.

20

1.2 History of Operating Systems

punch card

21

1.2 History of Operating Systems

Paper tape

22

1.2 History of Operating Systems
23

1.2 History of Operating Systems

Babbage’s analytical engine

(designed in 1840’s by Charles Babbage, but cold not be constructed by him.

An earlier and simpler version is constructed in 2002, in London)

24

5

1.2 History of Operating Systems

� Ada Lovalence (at time of Charles Babbage) wrote
code for analytical engine to compute Bernulli
Numbers

25

1.2 History of Operating Systems

� As time went on, card readers, printers, and
magnetic tape units were developed as additional
hardware elements.

� Assemblers, loaders and simple utility libraries were
developed as software tools.

� Later, off-line spooling and channel program
methods were developed sequentially.

26

1.2 History of Operating Systems

� Finally, the idea of multiprogramming came.

� Multiprogramming means sharing of resources
between more than one processes.

� By multiprogramming the CPU time is not wasted,
because, while one process moves on some I/O
work, the OS picks another process to execute till
the current one passes to I/O operation.

27

1.2 History of Operating Systems

� With the development of interactive computation in
1970s, time-sharing systems emerged.

� In these systems, multiple users have terminals (not
computers) connected to a main computer and
execute her task in the main computer.

28

1.2 History of Operating Systems

Terminals do not have

CPUs. Thus they are

connected to the main

computer and used for

input and output.

Main computer; having a CPU

executing processes by

utilization of the OS, (e.g. UNIX).

29

1.2 History of Operating Systems

� Another computer system is the multiprocessor
system having multiple processors sharing memory
and peripheral devices.

� With this configuration, they have greater
computing power and higher reliability.

30

6

1.2 History of Operating Systems

� Multiprocessor systems are classified into two as
tightly-coupled and loosely-coupled (distributed).

� In the tightly-coupled one, each processor is
assigned a specific duty but processors work in
close association, possibly sharing the same
memory.

� In the loosely coupled one, each processor has its
own memory and copy of the OS.

31

1.2 History of Operating Systems

� Use of the networks required OSs appropriate for
them.

� In network systems, each process runs in its own
machine but the OS have access to other machines.

� By this way, file sharing, messaging, etc. became
possible.

� In networks, users are aware of the fact that s/he is
working in a network and when information is
exchanged. The user explicitly handles the transfer
of information.

32

1.2 History of Operating Systems

Each is a computer having its own

CPU, RAM, etc. An OS supporting

networks is installed on them.

33

1.2 History of Operating Systems

� Distributed systems are similar to networks.
However in such systems, there is no need to
exchange information explicitly, it is handled by the
OS itself whenever necessary.

� With continuing innovations, new architectures and
compatible OSs are developed. But their details
are not in the scope of this text since the objective
here is to give only a general view about
developments in OS concept.

34

1.3 Operating Systems Structure

According to their structures, operating systems are
divided into five type:

� Monolithic Systems

� Layered Systems

� Virtual Machines

� Exokernels

� Client-Server

35

1.3.1 Monolithic Systems

In fact, there is no structure. The operating system is
written as a collection of procedures, each of which
can call any of the other ones whenever it needs to.

When this technique is used, each procedure in the
system has a well-defined interface in terms of
parameters and results, and each one is free to call
any other one, if the latter provides some useful
computation that the former needs.

36

7

1.3.1 Monolithic Systems
37

1.3.2 Layered Systems

Another approach is to organize the operating system
as a hierarchy of layers, each one constructed upon
the one below it.

The first system constructed in this way was the THE
system built at the Technische Hogeschool Eindhoven in
the Netherlands by E. W. Dijkstra (1968) and his
students.

38

1.3.2 Layered Systems

0

5

4

3

2

1

Processor allocation and multiprogramming

Memory and drum management

Operator-process communication

Input/output management

User programs

The operator

THE system (Technische Hogeschool Eindhoven)

by E. W. Dijkstra (1968)

39

1.3.3 Virtual Machines

Many users wanted to have timesharing, so various
groups, both inside and outside IBM decided to write
timesharing systems for it.

Produced system (VM/370) was based on an astute
observation: a timesharing system provides (1)
multiprogramming and (2) an extended machine with
a more convenient interface than the bare hardware.
The essence of VM/370 is to separate these two
functions.

40

1.3.3 Virtual Machines

The heart of the system, known as the virtual machine
monitor, runs on the bare hardware and does the
multiprogramming, providing not one, but several
virtual machines to the next layer up.

However, these virtual machines are not extended
machines, with files and other nice features. Instead,
they are exact copies of the bare hardware, including
kernel/user mode, I/O, interrupts, and everything else
the real machine has.

41

1.3.3 Virtual Machines

When a CMS program executes a system call, the call is
trapped to the operating system in its own virtual
machine. CMS then issues the normal hardware I/O
instructions for reading its virtual disk or whatever is
needed to carry out the call. These I/O instructions are
trapped by VM/370, which then performs them as part
of its simulation of the real hardware.

CMS (Conversational Monitor System)

42

8

1.3.4 Exokernels

The system gives each user a clone of the actual
computer, but with a subset of the resources ([0 1023],
[1024 2047] and so on). The exokernel allocates
resources to virtual machines and then checks any one
trying to use another else’s resources.

Each virtual machine thinks it has its own disk, so the
virtual machine monitor must maintain tables to remap
disk addresses (and all other resources). With the
exokernel, this remapping is not needed.

43

1.3.5 Client-Server

The aim is the leaving kernel in minimum (microkernel).
The usual approach is to implement most of the
operating system in client processes. To request a
service such as reading a file,

1. a client process sends the request to a server
process,

2. the server process does the work and sends back
the answer.

44

1.3.5 Client-Server

Because all the servers run as user-mode processes,
and not in kernel mode, they do not have direct access
to the hardware. As a consequence, if a bug in the file
server is triggered, the file service may crash, but this
will not usually bring the whole machine down.

45

1.3.5 Client-Server

The client-server model is its adaptability to use in
distributed systems. If a client communicates with a
server by sending it messages, the client need not
know whether the message comes from its own
machine or a remote machine.

46

1.4 Operating System Variety

Basically, there are seven kind of operating systems:

� Mainframe Operating Systems

� Server Operating Systems

� Multiprocessor Operating Systems

� Personal Computer Operating Systems

� Real-Time Operating Systems

� Embedded Operating Systems

� Smart Card Operating Systems

47

1.4.1 Mainframe OS

At the high end are the operating systems for the
mainframes, those room-sized computers still found in
major corporate data centers. These computers differ
from personal computers in terms of their I/O
capacity. A mainframe with 1000 disks and millions of
gigabytes of data is not unusual; a personal computer
with these specifications would be the envy of its
friends. Mainframes are also making something of a
comeback as high-end Web servers, servers for large-
scale electronic commerce sites, and servers for
business-to-business transactions.

48

9

1.4.2 Server OS

One level down are the server operating systems.
They run on servers, which are either very large
personal computers, workstations, or even mainframes.
They serve multiple users at once over a network and
allow the users to share hardware and software
resources. Servers can provide print service, file
service, or Web service. Typical server operating
systems are Solaris, FreeBSD, Linux and Windows
Server 200x.

49

1.4.3 Multiprocessor OS

A way to get high computing power is to connect
multiple CPUs into a single system. According to their
connection type and what they share, the systems are
called parallel computers, multicomputers, or
multiprocessors. They need special operating systems,
but often these are variations on the server operating
systems, with special features for communication,
connectivity, and consistency. Many popular operating
systems, including Windows and Linux, run on
multiprocessors.

50

1.4.4 PC OS

The next category is the personal computer operating
system. Modem ones all support multiprogramming,
often with dozens of programs started up at boot
time. Their job is to provide good support to a single
user. They are widely used for word processing,
spreadsheets, and Internet access. Common examples
are Linux, FreeBSD, Windows Vista, and the Macintosh
operating system. Personal computer operating
systems are so widely known that probably little
introduction is needed. In fact, many people are not
even aware that other kinds exist.

51

1.4.5 Real Time OS

Another type of operating system is the real-time
system. These systems are characterized by having
time as a key parameter. For example, if a car is
moving down an assembly line, certain actions must
take place at certain instants of time. If a welding
robot welds too early or too late, the car will be
ruined. Many of these are found in industrial process
control, avionics, military, and similar application
areas. These systems must provide absolute
guarantees that a certain action will occur by a
certain time.

52

1.4.6 Embedded OS

Embedded systems run on the computers that control
devices that are not generally thought of as
computers and which do not accept user-installed
software. Typical examples are microwave ovens, TV
sets, cars, DVD recorders, cell phones, MP3 players.
The main property which distinguishes embedded
systems from handhelds is the certainty that no
untrusted software will ever run on it. Systems such as
QNX and VxWorks are popular in this domain.

53

1.4.7 Smart Card OS

The smallest operating systems run on smart cards,
which are credit card-sized devices containing a CPU
chip. They have very severe processing power and
memory constraints. Some are powered by contacts in
the reader into which they are inserted, but
contactless smart cards are inductively powered,
which greatly limits what they can do. Some of them
can handle only a single function, such as electronic
payments, but others can handle multiple functions on
the same smart card. Often these are proprietary
systems.

54

10

1.5 OS Concepts

Most operating systems provide certain basic concepts
and abstractions such as processes, address spaces,
and files that are central to understanding them. In the
following sections, we will look at some of these basic
concepts ever so briefly, as an introduction. We will
come back to each of them in great detail later.

55

1.5.1 Processes

A key concept in all operating systems is the process.
A process is basically a program in execution.
Associated with each process is its address space, a
list of memory locations from 0 to some maximum,
which the process can read and write. The address
space contains die executable program, the program's
data, and its stack. Also associated with each process
is a set of resources, commonly including registers, a
list of open files, outstanding alarms, lists of related
processes, and all the other information needed to run
the program.

56

1.5.2 Address Spaces

Every computer has some main memory that it uses to
hold executing programs. In a very simple operating
system, only one program at a time is in memory. To
run a second program, the first one has to be
removed and the second one placed in memory. More
sophisticated operating systems allow multiple
programs to be in memory at the same time. To keep
them from interfering with another, some kind of
protection mechanism is needed. While this mechanism
has to be in the hardware, it is controlled by the
operating system.

57

1.5.3 Files

Another key concept supported by virtually all
operating systems is the file system. As noted before,
a major function of the operating system is to hide the
peculiarities of the disks and other I/O devices and
present the programmer with a nice, clean abstract
model of device-independent files. System calls are
obviously needed to create files, remove files, read
files, and write files. Before a file can be read, it must
be located on the disk and opened, and after it has
been read it should be closed, so calls are provided
to do these things.

58

1.5.4 Input / Output

All computers have physical devices for acquiring
input and producing output. Many kinds of input and
output devices exist, including keyboards, monitors,
printers, and so on. It is up to the operating system to
manage these devices. Consequently, every operating
system has an I/O subsystem for managing its I/O
devices. Some of the I/O software is device
independent, that is, applies to many or all I/O
devices equally well. Other parts of it, such as device
drivers, are specific to particular I/O devices.

59

1.5.5 The Shell

The operating system is the code that carries out the
system calls. Editors, compilers, assemblers, linkers,
and command interpreters definitely are not part of
the operating system, even though they are important
and useful. The Shell is the primary interface between
a user sitting at his terminal and the operating system,
unless the user is using a graphical user interface.
Although it is not part of the operating system, it
makes heavy use of many operating system features
and thus serves as a good example of how the system
calls can be used.

60

