
1

OPERATING SYSTEMS

FILE SYSTEM 1

10 File System

We will examine this chapter in three subtitles: 

�Mass Storage Systems

� File System Interface

� File System Implementation

1

• Mass Storage Structure

• Performance

• Other Storage Devices

• Disk Management

• Disk Scheduling

• RAID

10.1 Mass Storage Systems2

10.1.1 Mass Storage Structure

�Magnetic disks provide bulk of secondary storage

� It composes of some parts:

� Platters, read/write heads, arms, spindle

�Disk carries the data by help of some logical units:

�Cylinders, tracks, sectors

� The surface of a platter is logically divided into 
circular tracks, which are subdivided into sectors.

� The set of tracks that are at one arm position makes 
up a cylinder.

3

10.1.1 Mass Storage Structure
4

10.1.1 Mass Storage Structure

�Drives rotate at 60 to 250 times per second

� Transfer rate shows speed of data flow between 
drive and computer

� Positioning time (random-access time) is sum of times 
to move disk arm to desired cylinder (seek time) and 
to rotate under the disk head for desired sector 
(rotational latency)

�Drive attached to computer via I/O bus (EIDE, ATA, 
SATA, USB, Fibre Channel, SCSI, SAS, Firewire)

5



2

10.1.1 Mass Storage Structure

� Platters range from .85” to 14” 

� Commonly 3.5”, 2.5”, and 1.8”

� Capacity from 30GB to 3TB

� Performance 
� Transfer Rate – theoretical – 6 Gb/sec

� Effective Transfer Rate – real – 1Gb/sec

� Seek time from 3ms to 12ms – 9ms common for desktop drives

� Average seek time measured or calculated based on 1/3 of tracks

� Latency based on spindle speed

1 / (RPM / 60) = 60 / RPM

� Average latency = ½ latency

6

10.1.2 Performance

� Average access time = average seek time + average latency

� For a fastest disk 3ms + 2ms = 5ms

� For a slow disk 9ms + 5.56ms = 14.56ms

� Transfer time = amount to transfer / transfer rate

� Average I/O time = average access time + transfer time

+ controller overhead

7

10.1.2 Performance

Example: Find the average I/O time to transfer a 4KB 
block on a 7200 RPM disk with a 5ms average seek 
time, 1Gb/sec transfer rate with a 0.1ms controller 
overhead.

average access time = 5ms + 4.17ms = 9.17ms

transfer time = 4KB/1Gbps = 32 / 1024 = 0.031ms 

Average I/O time = 9.17ms + 0.031ms + 0.1ms

= 9.301ms

8

10.1.3 Other Storage Devices

Solid State Disks
� Nonvolatile memory used like a hard drive

� Can be more reliable than HDDs

� More expensive per MB

� Maybe have shorter life span 

� Less capacity

� Much faster

� Busses can be too slow -> connect directly to PCI for example

� No moving parts, so no seek time or rotational latency

9

10.1.3 Other Storage Devices

Magnetic Tape
� Was early secondary-storage

� Relatively permanent and holds large quantities of data

� Access time slow

� Random access ~1000 times slower than disk

� Mainly used for backup, storage of infrequently-used data, 
transfer medium between systems

� Kept in spool and wound or rewound past read-write head

� Once data under head, transfer rates comparable to disk

140MBps and greater

� 200GB to 1.5TB typical storage

10

10.1.4 Disk Management

� Before a disk can store data, it must be divided into sectors. 
Low-level formatting fills the disk with a special data structure 
for each sector.

� The data structure for a sector typically consists of a header, a data 
area (usually 512 bytes in size), and a trailer

� The header and trailer contain information used by the disk controller, 

such as a sector number and an error-correcting code

� To use a disk to hold files, the OS still needs to record its own 
data structures on the disk. It does so in two steps.

� First step is to partition the disk into one or more groups of cylinders. 

Each treated as a logical disk

� Then OS makes a file system as “logical formatting”

11



3

10.1.4 Disk Management

� After low-level formatting creates logical blocks, disk drive can 
be addressed as large one-dimensional array of logical 
blocks, where the logical block is the smallest unit of transfer.

� The one-dimensional array of logical blocks is mapped into the 
sectors of the disk sequentially.

� Sector 0 is the first sector of the first track on the outermost cylinder

� Mapping proceeds in order through that track, then the rest of the tracks 

in that cylinder, and then through the rest of the cylinders from outermost 

to innermost

� By using this mapping, a logical block number can be 
converted into a real disk address that consists of a cylinder 
number, a track number, and a sector number.

12

10.1.4 Disk Management

� On media that use constant linear velocity (CLV) like CD-ROM 
drive, the density of bits per track is uniform.

� As we move from outer zones to inner zones, the number of sectors per 
track decreases.

� Tracks in the outermost zone typically hold 40 percent more sectors than 
do tracks in the innermost zone.

� The drive increases its rotation speed as the head moves from the outer 

to the inner tracks to keep the same rate of data moving under the head.

� Alternatively, the disk rotation speed can stay constant, and the 
density of bits decreases from inner tracks to outer tracks to 
keep the data rate constant. This method is used in hard disks 
and is known as constant angular velocity (CAV).

13

10.1.4 Disk Management

� Computers access disk storage in two ways:

� Via I/O ports (or host-attached storage). It is common on small systems.

� Via a remote host in a distributed file system; this is referred to as 

network-attached storage.

� Host-attached storage accessed through local I/O ports. These 
ports use several technologies:

� The typical desktop PC uses an I/O bus architecture called IDE or ATA. 
This architecture supports a maximum of two drives per I/O bus

� A newer, similar protocol that has simplified cabling is SATA.

� High-end workstations  and servers generally use more sophisticated I/O 
architectures, such as SCSI and fiber channel (FC)

14

10.1.4 Disk Management

� SCSI itself is a bus architecture 

� It supports up to 16 devices on one cable. 

� Generally, the devices include one controller card in the host and up to 

15 storage devices (target).

� It provides the ability to address up to 8 logical units in each target.

� FC is high-speed serial architecture operating on optical fiber

� A wide variety of storage devices are suitable for use as host-
attached storage. Among these are hard disk drives, RAID 
arrays, and CD, DVD, and tape drives.

15

10.1.5 Disk Scheduling

� One of the responsibilities of the OS is to use the hardware 
efficiently. For the disk drives, meeting this responsibility entails 
having fast access time and large disk bandwidth.

� The access time has two major components 

� The seek time is the time for the disk arm to move the heads to the 
cylinder containing the desired sector.

� The rotational latency is the additional time for the disk to rotate the 
desired sector to the disk head.

� The disk bandwidth is the total number of bytes transferred, 
divided by the total time between the first request for service 
and the completion of the last transfer.

16

10.1.5 Disk Scheduling

� We can improve both the access time and the bandwidth by 
scheduling the servicing of disk I/O requests in a good order.

� For a multiprogramming system with many processes, the disk 
queue may often have several pending requests.

� Thus, when one request is completed, the OS chooses which 
pending request to service next.

� The OS can make this choice by DISK-SCHEDULING ALGORITHMS

17



4

10.1.5 Disk Scheduling

� Several algorithms exist to schedule the servicing of disk I/O 
requests

� We illustrate scheduling algorithms with a request queue

Example

Let’s the queue be “98, 183, 37, 122, 14, 124, 65, 67”

and the head pointer starts at 53

18

10.1.5 Disk Scheduling

Example “98, 183, 37, 122, 14, 124, 65, 67”

FCFS method finds total head movement of 640 cylinders
In First Come First Serve, all incoming requests are placed at the end of the queue.

19

10.1.5 Disk Scheduling

Example “98, 183, 37, 122, 14, 124, 65, 67”

SSTF method finds total head movement of 236 cylinders
Shortest Seek Time First selects the request with the minimum seek time from the current head 

position. SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests

20

10.1.5 Disk Scheduling

Example “98, 183, 37, 122, 14, 124, 65, 67”

SCAN method finds total head movement of 208 cylinders
The disk arm starts at one end of the disk, and moves toward the other end, servicing requests until 

it gets to the other end of the disk, where the head movement is reversed and servicing continues.

21

10.1.5 Disk Scheduling

Example “98, 183, 37, 122, 14, 124, 65, 67”

C-SCAN method finds total head movement of ??? cylinders
The head moves from one end of the disk to the other, servicing requests as it goes. When it 

reaches the other end, it immediately returns to the beginning of the disk.

22

10.1.5 Disk Scheduling

Example “98, 183, 37, 122, 14, 124, 65, 67”

C-LOOK method finds total head movement of ??? cylinders
Arm only goes as far as the last request in each direction, then reverses direction immediately, 

without first going all the way to the end of the disk

23



5

10.1.6 RAID

� RAID (redundant array of inexpensive disks) are commonly 
used to address the performance and reliability issues

� Extends the mean time to failure, repair and data loss

� RAID within a storage array can still fail if the array fails, so 
automatic replication of the data between arrays is common

� Frequently, a small number of hot-spare disks are left 
unallocated, automatically replacing a failed disk and having 
data rebuilt onto them

� The hot spare device runs as part of a working system. When a 
component fails, the hot spare is switched into operation 
immediately.

24

10.1.6 RAID
25

(a) RAID 0: non-redundant striping

C C

(b) RAID 1: mirrored disks

P P

(c) RAID 2: memory-style correction codes

P

P

(d) RAID 3: bit-interleaved parity

P

(e) RAID 4: block-interleaved parity

P P P

(f) RAID 5: block-interleaved distributed parity

P P

(g) RAID 6: P+Q redundancy

p

p

p

p

p

p

p

p
PP

• File Concept

• Access Methods

• Directory Structure

• File System Mounting

• File Sharing

• Protection

• Access Type

10.2 File System Interface26

10.2.1 File Concept

� File is an abstract data collection that has a specific 
purpose. Almost all information stored in a computer 
must be in a file. Each file writes/reads contiguous 
blocks of bytes from a logically contiguous address 
space.

� Generally there are two types of files

� Data (numeric, character, binary…)

� Program

� According to contents defined by file’s creator, there 
are many types (text, source, executable files…)

27

10.2.1 File Concept

� Information about files are kept in the directory 
structure, which is maintained on the disk

� Files have some attributes:

� Name, Identifier, Type, Location, Size

� Protection, Time-date, User identification

� Many variations, including extended file attributes 
such as file checksum

28

10.2.1 File Concept

� Name – only information kept in human-readable form

� Identifier – unique tag (number) identifies file within file 
system

� Type – needed for systems that support different types

� Location – pointer to file location on device

� Size – current file size

� Protection – controls who can do reading, writing, 
executing

� Time, date, and user identification – data for protection, 
security, and usage monitoring

29



6

10.2.1 File Concept

Some operations implemented on files

� Create – new file

�Write – at write pointer location

� Read – at read pointer location

� Seek – reposition within file

� Delete – from file system

�Open – search the directory structure on disk for entry, 
and move the content of entry to memory

� Close – move the content of entry in memory to 
directory structure on disk

30

10.2.1 File Concept

For opened files, some management rules are needed

�Open-file table: tracks open files

� File pointer:  pointer to last read/write location, per 
process that has the file open

� File-open count: counter of number of times a file is 
open – to allow removal of data from open-file table 
when last processes closes it

� Disk location of the file: cache of data access 
information

� Access rights: per-process access mode information

31

10.2.2 Access Methods

There are two usual type of file access 

� Sequential Access

� read next, write next, reset

� Direct Access – file has fixed length logical records

� read n, write n, position to n, read next, write next, rewrite n

(n : Relative block number) Relative block numbers allow OS 
to decide where file should be placed

32

10.2.3 Directory Structure
33

10.2.3 Directory Structure

� To keep track of files, file systems normally have directories or 
folders. Usually, a directory is itself a file. 

� The directory can be viewed as a symbol table that translates 
file names into their directory entries.

� A typical directory entry contains information (attributes, 
location, ownership) about a file.

� We want to be able

� to insert entries,

� to delete entries,

� to search for a named entry,

� to list all the entries in the directory.

34

10.2.3 Directory Structure

� The operations to perform on a directory:

� Search for a file in a directory structure to find the 
entry filename.

� Create a file as a new file and added to the directory.

� Delete a file remove a file from the directory.

� List a directory list the files in a directory and the 
contents of the directory entry for each file in the list.

� Rename a file is used to change a filename when the 
contents or use of the file changes.

35



7

10.2.3.1 Single Level Directory

It is the simplest directory structure. All files are 
contained in the same directory, which is easy to 
support and understand.

36

10.2.3.1 Single Level Directory

� On early personal computers, this system was common 
because there was only one user. 

� A single-level directory has significant limitations 
depending on the number of files and system user.

� Naming problem: convenient to users.

� Two users can have same name for different files.

� The same file can have several different names.

� Grouping problem: logical grouping of files by 
properties, (e.g., all Java programs, all games, …)

37

10.2.3.2 Two Level Directory

In the two-level directory structure, each user has his 
own user file directory (UFD). The UFDs have similar 
structures, but each lists only the files of a single user.

38

10.2.3.2 Two Level Directory

� In the two-level directory structure, each user has his 
own user file directory (UFD). The UFDs have similar 
structures, but each lists only the files of a single user.

� Although the two-level directory structure solves the 
name-collision problem, it still has disadvantages.

� When the users want to cooperate on some task and 
to access one another's files, they can not. Also the 
grouping problem is present.

39

10.2.3.3 Tree Structured Directory
40

10.2.3.3 Tree Structured Directory

� It allows users to create their own subdirectories and 
to organize their files accordingly.

� The tree structure has a root directory, and every file 
in the system has a unique path name.

� All directories have the same internal format.

� Path names can be of two types:

� An absolute path name begins at the root and follows a 

path down to the specified file, giving the directory names 
on the path.

� A relative path name defines a path from the current 
directory.

41



8

10.2.3.4 Acyclic-Graph Directories
42

10.2.3.4 Acyclic-Graph Directories

� The acyclic graph is a natural generalization of the 
tree-structured directory scheme.

� Some directories should be shared. A shared 
directory or file will exist in the file system in two (or 
more) places at once.

� A classical tree structure prohibits the sharing of files 
or directories. An acyclic graph (cycle-free graph) 
allows directories to share subdirectories and files. 

43

10.2.3.4 Acyclic-Graph Directories

� Several problems must be considered carefully for an 
acyclic-graph directory structure.

� A file may have multiple absolute path names. Thus, 
distinct file names may refer to the same file.

� Another problem involves deletion. When can the space 

allocated to a shared file be deallocated and reused?

� One possibility is to remove the file whenever anyone deletes 
it, but this action may leave dangling pointers to the now 
nonexistent file.

� Worse, if the remaining file pointers contain actual disk 
addresses, and the space is subsequently reused for other files, 
these dangling pointers may point into the middle of other files.

44

10.2.4 File System Mounting

� A file system must be mounted before it is available.

� The OS is given the name of the device and the mount 
point (the location within the file structure) to mount it.

� Typically, a mount point is an empty directory. Next, 
the OS verifies that the device contains a file system.

� Finally, the OS notes in its directory structure that a 
file system is mounted at the specified mount point.

� This scheme enables the OS to traverse its directory 
structure.

45

10.2.4 File System Mounting

� To illustrate file mounting, consider the file system 
depicted in (a), where the triangles represent sub-
trees of directories that are of interest.

46

sue jane

doc
prog

(b) unmounted system(a) mounted system

users

bill fred

help

\ (mounting point)

10.2.5 File Sharing

� File sharing is very desirable for multiple users. When an OS is 
used by multiple users, some subjects (file sharing, file naming, 
and file protection) become pre-eminent.

� To implement sharing and protection, the system must maintain 
more file and directory attributes than are needed on a single-
user system.

� Most systems have evolved to use the concepts of file (or 
directory) owner (or user) and group.

� The owner is the user who can change attributes and grant access and 

who has the most control over the file.

� The group attribute defines a subset of users who can share access to the 

file.

47



9

10.2.6 Protection

� When information is stored in a computer system, we want to 
keep it safe from physical damage (reliability) and improper 
access (protection).

� Reliability is generally provided by duplicate copies of files 
(copy disk files to tape).

� File systems can be damaged by hardware problems (such as 
errors in reading or writing), power surges or failures, head 
crashes, dirt, temperature extremes, and vandalism. Files may 
be deleted accidentally. Bugs in the file-system software can 
also cause file contents to be lost.

48

10.2.7 Access Type

� The need to protect files is a direct result of the ability to 
access files.

� Systems that do not permit access to the files of other users do not 
need protection.

� Alternatively, we could provide free access with no protection.

� Both approaches are too extreme. Third one is controlled 
access. Different types of operations may be controlled:

� Read, Write, Execute, Append, Delete, List

� Other operations, such as renaming, copying, and editing the 
file, may also be controlled. These higher-level functions may 
be implemented by a system program that makes lower-level 
system calls.

49

10.2.7 Access Type

� Mode of access:  read, write, execute

� Three classes of users on Unix / Linux
RWX

a) owner access 7 ⇒ 1 1 1
RWX

b) group access 6 ⇒ 1 1 0
RWX

c) public access 1 ⇒ 0 0 1

� Ask manager to create a group (unique name), say G, and 
add some users to the group.

� For a particular file (say game) or subdirectory, define an 
appropriate access.

o g p

chmod 761 game

50


